Neural Techniques for Combinatorial Optimization with Applications - Neural Networks, IEEE Transactions on
نویسندگان
چکیده
After more than a decade of research, there now exist several neural-network techniques for solving NP-hard combinatorial optimization problems. Hopfield networks and selforganizing maps are the two main categories into which most of the approaches can be divided. Criticism of these approaches includes the tendency of the Hopfield network to produce infeasible solutions, and the lack of generalizability of the self-organizing approaches (being only applicable to Euclidean problems). This paper proposes two new techniques which have overcome these pitfalls: a Hopfield network which enables feasibility of the solutions to be ensured and improved solution quality through escape from local minima, and a self-organizing neural network which generalizes to solve a broad class of combinatorial optimization problems. Two sample practical optimization problems from Australian industry are then used to test the performances of the neural techniques against more traditional heuristic solutions.
منابع مشابه
Neural techniques for combinatorial optimization with applications
After more than a decade of research, there now exist several neural-network techniques for solving NP-hard combinatorial optimization problems. Hopfield networks and self-organizing maps are the two main categories into which most of the approaches can be divided. Criticism of these approaches includes the tendency of the Hopfield network to produce infeasible solutions, and the lack of genera...
متن کاملExtended Hopfield models for combinatorial optimization
The extended Hopfield neural network proposed by Abe et al. for solving combinatorial optimization problems with equality and/or inequality constraints has the drawback of being frequently stabilized in states with neurons of ambiguous classification as active or inactive. We introduce in the model a competitive activation mechanism and we derive a new expression of the penalty energy allowing ...
متن کاملThe hysteretic Hopfield neural network
A new neuron activation function based on a property found in physical systems--hysteresis--is proposed. We incorporate this neuron activation in a fully connected dynamical system to form the hysteretic Hopfield neural network (HHNN). We then present an analog implementation of this architecture and its associated dynamical equation and energy function.We proceed to prove Lyapunov stability fo...
متن کامل"Optimal" Hopfield network for combinatorial optimization with linear cost function
An "optimal" Hopfield network is presented for many of combinatorial optimization problems with linear cost function. It is proved that a vertex of the network state hypercube is asymptotically stable if and only if it is an optimal solution to the problem. That is, one can always obtain an optimal solution whenever the network converges to a vertex. In this sense, this network can be called th...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998